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Abstract - We have investigated the dependence of spatial predictability, a statistical meamre of the reduction in uncertainty 
about one spatial variable that can be gained by knowledge of another, on the spatial resolution ( R , )  of the variables. While 
increasing resolution provides more descriptive information about the patterns in data, it also increases the difficulty of accu- 
rately modeling those patterns. By examining the variation of spatial predictability with R ,  in a number of case studies, we have 
proposed the existence of an “optimal” R ,  for specific studies, which balances these two factors. We analyzed land-use data by 
resampling map data sets at several different spatial resolutions and measuring predictability at each. Spatial auto-predictability 
(Pa) is the reduction in uncertainty about the state of a cell in a map given knowledge of the state of adjacent cells in that map, 
and spatial cross-predictability (P,) is the reduction in uncertainty about the state of a cell in a map given knowledge of the 
state of corresponding cells in other maps. The Pa is a measure of the internal pattern in the data, whereas P, is a measure of 
the ability of some “model” to represent the transition from one map to another. We found a strong linear relationship between 
the log of P, and the log of R ,  (measured as the number of cells per square kilometer). While P, generally increases with in- 
creasing R ,  (because more information is being included), P, generally falls or remains stable (because it is easier to mode! ag- 
gregate results than fine-grained ones). Thus, one can define an “optimal” R, for a particular modeling problem that balances 
the benefit in terms of increasing data predictability (measured by Pa) as one increases resolution, with the cost of decreasing 
facility of modeling the temporal dynamic5 (measured by P,). 

Keywords - Resolution Predictability Spatial modeling 

INTRODUCTION 

We have investigated the dependence of spatial predict- 
ability, a statistical measure of the reduction in uncertainty 
about one spatial variable that can be gained by knowledge 
of another, on the spatial resolution of the variables. A spa- 
tial variable is defined as a “map,” or a two-dimensional ar- 
ray of ‘‘cells,’’ each of which exists in a state represented by 
an integer value. The terms “map” and “state distribution” 
will be used interchangeably. This analysis utilizes temporal 
series of land-use maps of Maryland and Florida, and the set 
of possible states (state-space) for each location is displayed 
in the legend of Figure 1. Each series of maps was generated 
by observing the actual landscape at several points in time 
and assigning a state to  each cell based on this observation. 
The change in the state distribution over time is assumed to 
be driven by an implicit set of laws or “temporal dynamics,” 
which we are attempting to  mimic with a “model.” We as- 
sume that a highly predictable temporal evolution implies the 
existence of relatively simple and easily modeled underlying 
temporal dynamics (and vice versa). 

We can distinguish three types of resolution that are rel- 
evant to this study: 
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Fractal 

1 .  Spatial resolution ( R s ) .  By spatial resolution we mean 
“grain size” or the size of the smallest unit of spatial mea- 
sure, with increasing resolution corresponding to finer 
grain. In practice, it is measured as the number of cells 
in a map, assuming that all maps in the study cover the 
same geographic area. 

2. Temporal resolution ( Rc).  Temporal resolution is a mea- 
sure of the time-step between successive maps in a tem- 
poral dynamic series, with increasing temporal resolution 
representing a decreasing time-step. 

3 .  State-space resolution (Ra).  State-space resolution is a 
measure of the level of detail or “articulation” represented 
in the data that must be modeled. It is also a measure of 
the number of variables or degrees of freedom that will 
be necessary in constructing the model. In this study it is 
measured as the size of the state-space (i.e., the number 
of available states). 
We hypothesize that an important determinant of the spa- 

tial predictability of spatiotemporal dynamics is the scale (res- 
olution and extent) of the analysis. We can distinguish at least 
two ways that spatial resolution might affect spatial predict- 
ability. One is the increasing difficulty of building predictive 
models at increasing R,. For example, it is easier to predict 
general climate patterns than it is to predict the exact geo- 
graphic location and timing of rainstorms (the weather). 

On the other hand, higher R, allows more detail to be ob- 
served and internal patterns in the data to be seen that may 
not have been observed at cruder resolutions. One example 
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is the warm core gyres that form in the Gulf Stream that were 
not observed until remote sensing images, including the 
proper thermal bands and of sufficiently fine resolution, were 
available. Another example is the quest by the military to ob- 
tain high-resolution satellite images to  see the features (such 
as tanks and airplanes) of interest to them that would not ap- 
pear on lower-resolution images. 

Some phenomena are known to vary in a predictable way 
with resolution. For example, the analytical relationship be- 
tween the measured length of a coastline and the resolution 
at  which it is measured is a fundamental one behind the con- 
cept of fractals [I] and can be summarized in the following 
equation: 

where 
L = the length of the coastline or other “fractal” boundary 
s = the size of the fundamental unit of measure or the 

k = a scaling constant 
D = the fractal dimension. 
Fractal analysis has been shown to play an important role 

in landscape analysis [2-71. This convenient “scaling rule” has 
proved to be very useful in describing many kinds of com- 
plex boundaries and behaviors [5,8-1 I]. We hypothesized 
that this same kind of relationship might exist between res- 
olution and predictability (and possibly other measures as 
well) and might be useful for developing scaling rules for 
choosing the appropriate resolution when designing a model. 
We tested this hypothesis by calculating two forms of pre- 
dictability for a number of landscapes at  a number of dif- 
ferent spatial resolutions. 

resolution of the measurement 

MEASUREMENT OF PREDICTABILITY 

Colwell [12] applied information theoretic concepts to the 
problem of estimating the degree of predictability of periodic 
phenomena. The method is similar to autocorrelation anal- 
ysis except that it is applicable to both interval and categor- 
ical data and may thus be more appropriate, for example, 
for comparing patterns of land cover. Predictability in this 
context refers to  the reduction in uncertainty about one vari- 
able that can be gained by knowledge of another. For exam- 
ple, if the seasonal rainfall pattern in an area is predictable 
(e.g., there is always a severe dry summer), then knowing the 
time of year provides information about rainfall (if it is sum- 
mer, it must be dry). If there is no relationship between rain- 
fall and season, time of year tells us little and the rainfall is 
relatively unpredictable from a knowledge of time of year. 

These techniques can also be applied to spatial data [ 131. 
In this application, one is interested in the degree to which 
the uncertainty about the category of a particular cell is re- 
duced from knowledge of other aspects of the same map, or 
from knowledge of aspects of other related maps. Several as- 
pects of a map might be used as predictors. We discuss two 
implementations based on (a) the state of adjacent cells in 
the same map (“auto-predictability’’ or “spatial-adjacency 
predictability,” Pa), and (b) the state of corresponding cells 
in other related maps (“spatial cross-predictability,” P,). 

Other combinations of these two and higher-level analyses 
(i.e., adjacent cell pairs, triplets, etc., or multiple cross- 
comparisons) are also possible and useful for various pur- 
poses [ 131. 

The method in general can determine if there are regular- 
ities in a spatial data set, ranked on a scale from 0 (totally 
unpredictable) to 1 (totally predictable), and the answer can 
be interpreted as the degree of departure of the map or com- 
parison between maps from a random (totally unpredictable) 
pattern. 

To estimate spatial predictability, one first assembles a 
contingency matrix with states of the cells along the left axis, 
and corresponding states of other cells along the top. For 
auto-predictability the categories in a map are listed on the 
left and along the top of a matrix. The numbers in the ma- 
trices represent the frequency of occurrence in the mapped 
data of the category (or category pair, triplet, etc., for higher- 
level analysis) listed along the top of the matrix lying adjacent 
to the category listed along the left. This yields information 
about how predictable the patterns of adjacency are in the 
sample map data. 

The contingency matrix can be any set of meaningful spa- 
tial relationships in the data. For example, another way of 
setting up the matrix is to define the spatial predictability 
of one map given another map. For example, we might want 
to know the spatial predictability of a landscape in one year 
given information in some previous year@), or we might 
want to know the spatial predictability of a real landscape 
compared to a landscape model’s output. We call this the 
“cross-predictability” because it provides information on the 
predictability of a given cell’s category given knowledge of 
the category of the corresponding cell in another map. 

Following Colwell [12], we define N,, to be the elements 
in the contingency matrix (i.e., the number of times in the 
data that a cell of category i was adjacent to one of category 
j for auto-predictability analysis). Define X, as the column 
totals, Y, as the row totals, and Z as the grand total, or 

I 

(3) 

where s (t) is the total number of rows (columns) in the con- 
tingency matrix, and 

1 1  J I 

Then the uncertainty with respect to X i s  

and the uncertainty with respect to Y is 

s r ,  r, H (  Y )  = -c ; log ; 

(4) 

( 5 )  
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and the uncertainty with respect to  the interaction of X and 
Yis 

Nu Nl, H ( X Y )  = -c c - log -. 
1 , z  

(7) 

Then define the conditional uncertainty with regard to Y with 
X given as 

H , ( Y )  = H ( X Y )  - H ( X ) .  

Finally, define a measure of predictability ( P )  with the range 
(0,1) as 

H ( X Y )  - H ( X )  
- 1 -  (9) 

H ( Y )  p = l - L -  
log s log s 

where s is the total number of rows (categories) in the con- 
tingency matrix. 

This measure gives an index scaled on the range from 0 
(unpredictable or maximum uncertainty) to 1 (totally predict- 
able or minimum uncertainty). Predictability will be minimal 
when all the elements in the contingency matrix (NJ are 
equiprobable (i.e., when all entries are the same), and will 
be maximized when only one entry in each column is non- 
zero. Most real spatial data will fall between these extremes. 

STUDY AREAS 

We applied these indices of spatial predictability to land- 
use data sets from the Kissimmee/Everglades Basin, Florida, 
and the state of Maryland. Both of these data sets contained 
three distinct years of data over which significant changes in 
land-use patterns had occurred. 

~issiFrimee/Everg~ades basin, Florida 

The Kissimmee/Everglades drainage basin in south Flor- 
ida represents one of the most rapidly changing and inten- 
sively modified landscapes in the country. It consists of some 
18,700 square miles (48,500 km2) of land and water, cover- 
ing about one-fourth of the state of Florida. A set of three 
land-use maps with 26 land-use categories was prepared for 
the years 1900, 1953, and 1973 in order to analyze the dra- 
matic changes that had occurred in the region during this in- 
terval [14,15]. In 1900, when much of the United States had 
already been developed into farmland and cities, the Kissim- 
mee/Everglades basin remained much as it had been for cen- 
turies. By 1953, the expanding U.S. middle-class and postwar 
economic boom had led to  significant urban and agricultural 
development. This development accelerated into the 1970s 
and 1980s. 

For the spatial predictability analysis we used versions of 
the land-use maps that had been manually digitized into 128- 
acre (0.52 km2) rectangular cells, each 625 by 833 m [15]. 
This produced an array with overall dimensions of 576 rows 
by 400 columns (230,400 total cells) of which about 93,000 
were inside the study area. Each cell was assigned one of 26 
land-use categories ranging from natural to  agricultural to 
urban systems [15]. 

State of Maryland 
The Maryland Department of State Planning has com- 

piled digitized land-use data (using 80-acre cells) for three dif- 
ferent years (1973, 1981, and 1985) for the entire state, using 
20 different land-use categories. While there were significant 
shifts in land use in Maryland, land use had changed much 
less dramatically in this area over the 12-year interval between 
1973 and 1985 than it had in south Florida during the 1900 
to 1973 interval. Major changes involved reforestation of ag- 
ricultural areas and significant increases in urban land uses, 
especially in the Washington/Baltimore corridor. For the 
state of Maryland we used a rectangular array of 345 rows 
by 640 columns or a total of 220,800 cells, of which approx- 
imately 68,800 were within the boundaries of the state. 

SOFTWARE AND ALGORITHMS 

Land-use data from the two study sites were imported into 
Map 110, a simple and easy-to-use raster-based geographic 
information system (GIS) package for the Macintosh, to pre- 
pare data files for calculations using high-speed parallel 
transputers, as discussed below. Any CIS system capable of 
producing raster output would be suitable, however. 

Decreasing the spatial resolution (increasing the grain) of 
a spatial data set involves the repetitive resampling of a spec- 
ified number of smaller cells into larger cells. Analytically, 
this is accomplished by moving a resampling matrix (whose 
size is the number of rows and columns of the original data 
needed to make a single cell in the new raster) through the 
original raster. The cell values falling within the resampling 
matrix are tabulated and used to  determine the value of the 
appropriate larger cell in the new, coarser resolution raster. 
We experimented with several methods of resampling or ag- 
gregating the spatial data. 

The first method, which we call proportional aggregation, 
assigns the cell values in the coarser-grain raster according 
to the most dominant category found within the resampling 
matrix. A second method, termed random aggregation, as- 
signs new categories by randomly choosing from the catego- 
ries found within the resampling matrix. The major difference 
between the two methods is that rare categories are more 
likely to  be preserved when the data are resampled with the 
random aggregation scheme. While the choice of aggregation 
scheme can be significant in many spatial analyses, we found 
that the aggregation scheme made little difference to the re- 
sults of our particular experiments. We settled on a version 
of the random aggregation scheme that is both simple and 
suits our immediate needs. In this version aggregation takes 
place in steps. In each step the original map is aggregated 
using a 2 x 2 resampling matrix, yielding an aggregated map 
with one-fourth the number of cells of the original. In each 
2 x 2 resampling matrix we choose the category of the north- 
west cell as the category for the cell in the aggregate map. 
This process was repeated on the new aggregate map to yield 
a series of maps each with one-fourth the total number of 
cells of the one preceding it in the series. Each map in this 
series has one-fourth the resolution of the preceding map. 
For the Florida maps the resulting resolutions (in cells/km2) 
were 1.333 (original), 0.333, 0.083,0.021, and 0.005. For the 
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Maryland maps the resulting resolutions (in cells/km2) were 
2.743 (original), 0.686, 0.171, 0.043, and 0.011. 

We developed algorithms in a parallel version of the C pro- 
gramming language to calculate auto- and cross-predictability 
for mapped data on Inmos Transputers (a form of RISC- 
based parallel processor) on a Macintosh [ 161. Each map was 
parceled into four equal-sized submaps, and the four submaps 
were processed in parallel, each by a separate transputer. 
Transputers are extremely fast for this sort of calculation. 
For example, for the south Florida data (a 576 x 400 array) 
calculation of auto-predictability at five levels of resolution 
and printing results to  a text file took approximately 2.4 sec- 
onds using a Macintosh Ilci with four transputers.* 

AUTO-PREDICTABILITY EXPERIMENTS 

We calculated Pa for both study areas for all three years 
and at  five different spatial resolutions (R5) ,  holding state- 
space resolution R, constant. We started with the maximum 
R, of the data and gradually degraded it by aggregating 
cells. In each step we halved R, by aggregating 2 x 2 blocks 
of cells at the previous R, into single cells as described 
above. Spatial resolution is frequently indicated as the length 
of a side of a cell, with higher or finer resolution correspond- 
ing to smaller cell sizes. For example, LANDSAT satellite 
data has 30-m resolution while SPOT satellite data has finer 
resolution at 18 m. In our plots we wanted higher resolution 
to correspond to higher (not lower) numbers, so we measured 
resolution as the number of cells per km’. For example, 
50-m cells would have a resolution of 400 cells/km2, while 
200-m cells would have a resolution of 25 cells/km2. We fit 
the equation 

where 
P = the spatial predictability (Pa refers to auto-predict- 

r = the resolution measured as the number of cells/km2 
k = a unitless scaling factor 

ability; P, refers to  cross-predictability) 

D, = the fractal predictability dimension (unitless), 
by first transforming it into log-log form: 

In P = In (k )  + (1 - D,)ln(r) (1 1) 

and using standard linear regression analysis to solve for the 
parameters k and Dp. 

Results are summarized in Table 1 ,  which indicates the 
high R2 for this relationship for both of the study sites. 

CROSS-PREDICTABILITY EXPERIMENTS 

We calculated P, for both of the study areas by compar- 
ing maps from different years. We hypothesized the existence 

*The algorithms also work on serial machines, only slower. Each 
transputer is approximately the speed ot a SUN Sparc station so the 
transputer time is about four times the speed one would expect on 
a Sparc station. Contact Tom Maxwell for more information about 
obtaining the algorithms or using transputers for spatial analyyis. 

Table 1 .  Fractal auto-predictability dimension 
(given as 1 - D,,), scale constant ( k ) ,  adjusted R2,  

and degrees of freedom ( d . f . )  for auto-predictability (Pa)  
from regression of Equation 3 for both data sets 

Site and 
year k (1 - DAp) Adj. R2 d.J 

Kissimmee/Everglades, Florida 
1900 0.6364 0.111 0.999** 4 
1953 0.6383 0.085 0.988** 4 
1973 0.6250 0.096 0.981** 4 
all years 0.6332 0.097 0.958** 14 

1973 0.5189 0.031 0.780* 4 
1981 0.5046 0.034 0.780* 4 
1985 0.4956 0.030 0.631* 4 
all years 0.5434 0.031 0.720** 14 

** Indicates significant at the 0.01 level; * indicates significant at the 
0.05 level. 

State of Maryland 

of an implicit spatiotemporal dynamics that generates the 
state distribution at time t + 1 given the state distribution at 
time t. The goal of the modeler is to make the implicit dy- 
namics explicit (i.e., express it as a set of equations), and P, 
can then be interpreted as a measure of how difficult this task 
will be. We were interested in studying the relationship be- 
tween P, and R,. We measured P, for five values of R, and 
fit Equation 11 to the data. The results for the two sites eval- 
uated at several time points are shown in Table 2. 

Results of both the auto- and cross-predictability experi- 
ments for both sites are plotted together on a log-log scale 
in Figure 1. The strong linearity of the relationship for all 
cases is apparent, as is the fact that auto-predictability (Pa) 
increases with increasing spatial resolution (R,)  while cross- 
predictability (P,) decreases slightly with increasing R,, al- 
though with a smaller D,. These results are consistent with 
our original hypotheses. Results for the Kissimmee/Ever- 
glades data are markedly different from those for the Mary- 
land data. The auto-predictability of Maryland land use 
changed much less with R, than the Kissimmee/Everglades 
land use. The slope of the regression line (1  - DAp)  for the 
Kissimmee/Everglades data was roughly three times that for 

Table 2. Fractal cross-predictability dimension 
(stated as 1 - D,,), scale constant ( k ) ,  adjusted R2,  and 
degrees of freedom (d.f.) from regression of Equation 3 

for cross-predictability (P,) for both data sets 

Site and 
year k (1 - D, ,,) Adj. R2 d. f .  

Kissimmee/Everglades, Florida 
1900/1953 0.5764 -0.011 0.943** 4 
1953/ 1973 0.4936 -0.017 0.778* 4 

State of Maryland j _  

1973/ 198 1 1.0790 -0.006 0.805* 4 
1981/1985 0.9296 -0.004 0.777* 4 

** Indicates significant at the 0.01 level; * indicates significant at the 
0.05 level. 
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A: Kissimmee Everglades Basin, Florida 
- 3 ,  . ’ i t 
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B: State of Maryland 
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Fig. 1. Natural log of resolution vs. natural log of predictability for 
(A) the Kissimmee/Everglades, Florida, and (B) the state of Mary- 
land land-use data. Plot shows both auto-predictability (Pa)  indi- 
cating internal pattern in the data for three different years, and 
cross-predictability (P,) indicating pattern matching between null 
models of prior land-use maps and the particular map. The resolu- 
tions used (in cells/km2) were: Florida, 0.005, 0.021, 0.083, 0.333, 
1.333; Maryland, 0.011, 0.043, 0.171, 0.686, 2.743. 

the Maryland data. Auto-predictability varied from about 
0.65 to  0.35 over the range of resolutions used for the Flor- 
ida data, but only from about 0.55 to 0.45 for the Maryland 
data. The Kissimmee/Everglades data were also more pre- 
dictable at the highest resolutions than were the Maryland 
data. 

The cross-predictability results also differ markedly be- 
tween the Florida and Maryland data. The slope of the re- 
gression line ( 1  - Dcp) was about three times higher for the 
Florida data than the Maryland data. The difference in P, 
and Pa results between .the Maryland and Florida data is 
largely due to the fact that the Maryland temporal dynam- 
ics are sampled at a higher rate, yielding data at a higher tem- 
poral resolution (Rt) .  We see that increasing R, results in 
increasing P, and Pa, owing to the fact that increased tem- 
poral resolution will result in decreased variation in state- 
space and thus increasing predictability. We conjecture that 
increasing state-space resolution R, would result in decreas- 
ing P, and Pa, due to the fact that increasing the number of 
possible states makes prediction more difficult. 

DISCUSSION AND CONCLUSIONS 

We can draw several conclusions from our analysis. First, 
Pa and P, belong to a class of measures (inspired by “frac- 
tal dimension”) that vary in a regular way as resolution 
changes. This allows an index to be calculated that permits 
easy conversion of measurements of P taken at one resolu- 
tion to other resolutions (for example, resolutions higher than 
those for which we have data). This measure, together with 
other measures (including those documented and those yet 
to be discovered) that also exhibit this kind of self-similarity, 
may be useful in developing a generalized theory of scaling. 

Second, Pa generally increases with increasing spatial res- 
olution ( Rs). This relationship represents the “benefit” in 
terms of information gained about the pattern as R, is 
increased. 

Third, P, generally falls with increasing R,. This relation- 
ship represents the “cost” of decreased model predictability 
as R, is increased. 

Fourth, combining the second and third conclusions leads 
to some hypotheses about determining an “optimal” spatial 
resolution (R,) for specific studies. At very low Rs it is eas- 
ier to build predictive models, but they have little useful de- 
tail. At high R, much useful detail is retained, but models 
are less able to predict it. An optimal R, for scientific anal- 
ysis may occur where these trends intersect (Fig. 2) - where 
one is balancing the costs and benefits incurred with increas- 
ing R,. These results are consistent with empirical data from 
a survey of over 85 models of freshwater wetlands [17]. 

Fifth, we suspect that the optimal resolution may vary de- 
pending on the class of temporal state-space dynamics that 
is observed in the map series (and subsequently modeled), 
and possibly for each particular set of modeling objectives. 
We also suspect that P, and its associated Dcp will change 
with changing technology and modeling skills. We are cur- 

Model Predictability 
(different models have difleient ?lope\ dnd points ot intersection) 

ata Predictability 

“Optimum resolution\ fur panicular models 

Lowel Higher 
(lager grain) (mailer grain) 

Ln of Resolution 

Fig. 2. Hypothetical relationship between resolution and predict- 
ability of data and models. Data predictability is the degree to which 
the uncertainty about the state of landscape cells is reduced by knowl- 
edge of the state of adjacent cells in the same map. Model predict- 
ability is the degree to which the uncertainty about the state of cells 
is reduced by knowledge of the corresponding state of cells in out- 
put maps from various models of the system. 
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rently pursuing research aimed at addressing these questions 
by applying process-based spatial models at several differ- 
ent resolutions. 

Finally, other indices may exist that exhibit similar be- 
havior for resolution measures other than R, (e.g., temporal 
[R,] and state-space [R,])  and may shed some interesting 
light on “chaotic” behavior in systems. When looking across 
resolutions, chaos may be the low level of model predictabil- 
ity that occurs as a natural consequence of high resolution. 
Lowering model resolution can increase model predictabil- 
ity by averaging out some of the chaotic behavior at the ex- 
pense of losing detail about the phenomenon. For example, 
Sugihara and May [ l  I ]  found chaotic dynamics for measles 
epidemics at the level of individual cities, but more predict- 
able periodic dynamics for entire nations. The idea is not to 
maximize the resolution of analysis so as to “discover” this 
“unpredictable” chaotic behavior, nor is it to maximize pre- 
dictability by ignoring details. Rather, the aim is to choose 
the resolution that maximizes the effectiveness of the model 
in balancing the conflicting trends of data and model predict- 
ability with changing resolution. 
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